Surface Energies Arising in Microscopic Modeling of Martensitic Transformations

Angkana Rüland

(joint work with G. Kitavtsev and S. Luckhaus)

Conference on Hysteresis, Avalanches and Interfaces in Solid Phase Transformations, Oxford, 21.09.2016

Angkana Rüland (University of Oxford)

Surface Energies

Introduction

2 The Model Hamiltonian

3 Results

- 4 Ideas of Proof
- 5 Conclusion and Outlook

Questions and Objectives

- Justification of continuum models as limits of discrete models (closer to first principles)? How are continuum models related to the atomistic Hamiltonians governing the behavior of the atoms in a crystal?
- Explanations of surface energies? Is it possible to extract surface energy contributions from a discrete Hamiltonian?
- Discrete elastic energies as regularizations of continuum energies? Comparability to singular perturbation problems?

The Square-to-Rectangular Phase Transition and Shape Memory Alloys

Experimental Observations: Diffuse Interfaces

Br 1

above: perovskite (Salje) left: $Pb_3V_2O_8$ (Manolikas, van Tendeloo, Amelinckx) Introduction

Experimental Observations: Sharp Interfaces

NiMn (Baele, van Tendeloo, Amelinckx)

Angkana Rüland (University of Oxford)

Surface Energies

Deformations: Examples

Homogeneous transformations to martensite are characterized by

- horizontal/vertical distances between neighboring atoms are given by a or b,
- neighboring horizontal/vertical inter-atomic
 - distances are equal,
- ▶ angles of 90°.

interfaces between the martensitic variants \rightsquigarrow violation of these properties.

Set-up

$$\begin{split} \Omega_n &:= \left\{ z \Big| z = s \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}, s, t \in [-1,1] \right\} \cap [\lambda_n \mathbb{Z}]^2, \\ u_n &: \Omega_n \to \mathbb{R}^2, \ u_n^{j,-n-j} = F \lambda_n \begin{pmatrix} j \\ -n-j \end{pmatrix}, \\ u_n &\in \mathcal{A}_n &:= \{ v : \Omega_n \to \mathbb{R}^2 | \det(v(x_2) - v(x_1), v(x_3) - v(x_1)) > 0 \\ & \text{ for all } x_1, x_2, x_3 \in \Omega_n \text{ such that } \dim(x_1, x_2, x_3) = \sqrt{2} \lambda_n \\ & \text{ and } \det(x_2 - x_1, x_3 - x_1) > 0 \}. \end{split}$$

Construction of a Model Hamiltonian

$$\begin{split} H_n(u) &:= \sum_{i,j=-n}^n \lambda_n^2 h\left(\frac{u^{ij} - u^{i\pm 1j}}{\lambda_n}, \frac{u^{ij} - u^{ij\pm 1}}{\lambda_n}\right) \\ &= \sum_{i,j=-n}^n \lambda_n^2 \left[\left(\left(\frac{u^{ij\pm 1} - u^{ij}}{\lambda_n}\right)^2 - a^2 \right)^2 + \left(\left(\frac{u^{i\pm 1j} - u^{ij}}{\lambda_n}\right)^2 - b^2 \right)^2 \right. \\ &+ \left(\left(\frac{u^{ij\pm 1} - u^{ij}}{\lambda_n}\right) \cdot \left(\frac{u^{i\pm 1j} - u^{ij}}{\lambda_n}\right) \right)^2 \right] \times \\ &\times \left[\left(\left(\frac{u^{ij\pm 1} - u^{ij}}{\lambda_n}\right)^2 - b^2 \right)^2 + \left(\left(\frac{u^{i\pm 1j} - u^{ij}}{\lambda_n}\right)^2 - a^2 \right)^2 \right. \\ &+ \left(\left(\frac{u^{ij\pm 1} - u^{ij}}{\lambda_n}\right) \cdot \left(\frac{u^{i\pm 1j} - u^{ij}}{\lambda_n}\right) \right)^2 \right]. \end{split}$$

Construction of a Model Hamiltonian

$$H_n(u) := \sum_{i,j=-n}^n \lambda_n^2 h\left(\frac{u^{ij} - u^{i\pm 1j}}{\lambda_n}, \frac{u^{ij} - u^{ij\pm 1}}{\lambda_n}\right)$$

Advantages and Disadvantages

- based on geometric quantities,
- ▶ has $SO(2)U_0 \cup SO(2)U_1$ as wells,
- controls distance from wells,
- controls discrete second derivatives.

- ad hoc, no "first principles" justification for explicit form,
- uses underlying reference configuration,
- no defects allowed.

Martensitic Twins

$$U_0 - QU_1 = \sqrt{2} \frac{a^2 - b^2}{a^2 + b^2} \begin{pmatrix} a \\ -b \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ Q \in SO(2),$$
$$U_0 - \tilde{Q}U_1 = \sqrt{2} \frac{a^2 - b^2}{a^2 + b^2} \begin{pmatrix} a \\ b \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ \tilde{Q} \in SO(2).$$

Angkana Rüland (University of Oxford)

The Chain Hamiltonian

Additional "chain" assumption:

$$u_n^{i+1j} - u_n^{ij+1} = -\lambda_n \tau^{i+j+1}, \quad \tau^i \in SO(2) \begin{pmatrix} -a \\ b \end{pmatrix},$$

 \rightsquigarrow corresponding adaptations for Hamiltonian

$$H_n(u_n) = \lambda_n^2 \sum_{i,j=-n}^n h\left(\frac{u_n^i - u_n^{i\pm 1}}{\lambda_n}, \tau_n^i, \tau_n^{i\pm 1}, j\right).$$

Set-up

$$H_{n}(u_{n}) := \sum_{i,j} \lambda_{n}^{2} h(u^{i \pm 1} - u^{i}, \tau_{n}^{i}, \tau_{n}^{i \pm 1}, j) \leq C\lambda_{n},$$
$$u_{n}^{j,-n-j} = \lambda_{n} F_{\mu} \begin{pmatrix} j \\ -n-j \end{pmatrix}, \ u_{n} \in \mathcal{A}_{n,\tau}^{F_{\mu}},$$
$$F_{\mu} = \mu Q U_{0} + (1-\mu) U_{1}, \ Q \in SO(2), \mu \in [0,1].$$

Rigidity

Proposition

Let $F_{\mu} := \mu U_0 + (1 - \mu) Q U_1$ with $\mu \in [0, 1]$. Let $\{u_n\}_{n \in \mathbb{N}} \in \mathcal{A}_{n, \tau}^{F_{\mu}}$ s.t.

$$\limsup_{n \to \infty} \lambda_n^{-1} H_n(u_n) < \infty.$$

Then there exists a number $K \in \mathbb{N}$ and a subsequence such that

•
$$u_n \to u$$
 in $W^{1,4}(\Omega, \mathbb{R}^2)$,

▶ for each $s \in \{1, ..., K-1\}$ there exists $m_s \in \{0, 1\}$, $x_s \in [-1, 1]$ such that

$$\nabla u(z) = Q^{m_s} U_{m_s},$$

for
$$z \in \Omega(x_s, x_{s+1})$$
 where $Q^0 = Id$, $Q^1 := Q$ and $x_K = 1$,
 $\bigcup_{s=1}^{K-1} [x_s, x_{s+1}] = [-1, 1].$

Angkana Rüland (University of Oxford)

Results

Rigidity

Results

Surface Energies

$$C(V_{2}, V_{3}, r^{*}) := \liminf_{n \to \infty} \min_{\tau_{i}, u^{i}} \left\{ \sum_{i \in \mathbb{Z}} \frac{1}{n} \sum_{j = -n}^{n} h\left(u_{n}^{i} - u_{n}^{i \pm 1}, \tau_{n}^{i}, \tau_{n}^{i \pm 1}, j\right) : u \in \mathcal{A}_{n, \tau}^{r}, \ u^{i - jj} = V_{2} \binom{i - j}{j} + r_{1}, \ i \leq -n, \ |j| \leq n, u^{i - jj} = V_{3} \binom{i - j}{j} + r_{2}, \ r^{*} = r_{2} - r_{1}, \ i \geq n, \ |j| \leq n \right\}.$$

Surface Energies

Proposition

$$H_n^1 := \lambda_n^{-1} H_n \xrightarrow{\Gamma} E_{surf}$$
 with respect to the L^{∞} topology.

Here,

$$E_{surf}(u) := \begin{cases} E^{K}(F_{\mu}, \nabla u(x_{1}-, 0), ..., \nabla u(x_{(K-1)}-, 0), F_{\mu}), \\ \text{if } u \in W_{0}^{1,\infty}(\Omega) + F_{\mu}x, \ \nabla u \in \{U_{0}, QU_{1}\} \\ \text{in } \Omega(x_{j}, x_{j+1}), u \text{ satisfies the b.c.,} \\ \infty, \quad \text{else}, \end{cases}$$

$$E^{K}(V_{0},...,V_{K}) := \inf_{r} \left\{ B^{+}(V_{0},V_{1},r_{0}) + \sum_{s=1}^{K-2} C(V_{s},V_{s+1},r_{s}) + B^{-}(V_{K-1},V_{K},r_{K-1}) \right\}.$$

Comparison with Literature

Discrete:

- Blanc, Le Bris, Lions (2002): From molecular models to continuum mechanics.
- Braides, Cicalese (2007): Surface energies in nonconvex discrete systems.
- Luckhaus, Mugnai (2009): On a mesoscopic many-body Hamiltonian describing elastic shears and dislocations.

Continuous:

 Conti, Schweizer (2006): Rigidity and Gamma Convergence for Solid-Solid Phase Transitions with SO(2) Invariance.

$$\sum_{i,j=-n}^{n} \frac{1}{n} h(u^{i\pm 1,j\pm 1} - u^{ij}) \le C \quad \stackrel{\epsilon = \frac{1}{n}}{\longleftrightarrow} \quad \int_{\Omega} \frac{1}{\epsilon} W(\nabla u) + \epsilon |\nabla^2 u|^2 dx \le C$$

Compactness: Good Layers

There exist j_{-1}^n, j_0^n, j_1^n s.t. ▶ $j^n_1 \in [-n, -n+2\delta n], j^n_0 \in [-\delta n, \delta n], j^n_1 \in [n-2\delta n, n],$ $\lambda_n \sum_{i=-n}^n h\left(\frac{u_n^i - u_n^{i\pm 1}}{\lambda_n}, \tau_n^i, \tau_n^{i\pm 1}, j_l^n\right) \lesssim n^{-\alpha},$ $\blacktriangleright \# \left\{ i \in [-n,n] : h\left(\frac{u_n^i - u_n^{i\pm 1}}{\lambda_n}, \tau_n^i, \tau_n^{i\pm 1}, j_l^n\right) \ge n^{-\alpha} \right\} \lesssim \delta^{-1} n^{\alpha},$ • there exists a number $M_{\delta} > 0$, independent of n with $\#\left\{i\in[-n,n]:\ h\left(\frac{u_n^i-u_n^{i\pm 1}}{\lambda_n},\tau_n^i,\tau_n^{i\pm 1},j_l^n\right)\geq \tilde{c}\right\}\leq M_{\delta}.$ Chain structure: \blacktriangleright L^{∞} bound:

$$|\nabla u_n^{ij}| \leq c < \infty$$

for all
$$i, j \in \{-n, \ldots, n\}$$
.

Compactness: Simultaneously Good Points

For each "simultaneously good" $i \in [-n, n]$ there exists $Q_{i,n} \in SO(2)$ such that either

$$\begin{split} ||\nabla u_n^{i-jj} - Q_{i,n}U_0||_{C(\Omega_{i-jj})} \lesssim n^{-\alpha/4} \quad \text{for all} \quad j \in [-n,n], \\ \text{or } ||\nabla u_n^{i-jj} - Q_{i,n}U_1||_{C(\Omega_{i-jj})} \lesssim n^{-\alpha/4} \quad \text{for all} \quad j \in [-n,n]. \end{split}$$

Compactness: Conclusion

Up to subsequences,

- ▶ there exist $K \in \mathbb{N}$, $x_1, ..., x_K \in (-1, 1)$ independent of n,
- and for any n there exist associated points $x_1^n,...,x_K^n\in(-1,\,1)$ and $y_{s,1}^n,...,y_{s,K_s^n}^n\in(x_s^n,x_{s+1}^n)$

such that

- ▶ $x_s^n \to x_s, s \in \{1, ..., K\},$
- ► $u_n \rightharpoonup u$ in $W^{1,4}(\Omega)$,
- ▶ in the interval (x_s^n, x_{s+1}^n) the following dichotomy holds: For each i with $\lambda_n i \in (y_{s,l}^n, y_{s,l+1}^n) \subset (x_s^n, x_{s+1}^n)$ and $l \in \{1, ..., K_s^n\}$, either

$$\operatorname{dist}(\nabla u_n^{i-jj}, SO(2)U_0) \lesssim n^{-\alpha/4} \quad \text{ or } \operatorname{dist}(\nabla u_n^{i-jj}, SO(2)U_1) \lesssim n^{-\alpha/4}$$

for all $j \in [-n, n]$.

Gamma-Limit

- Idea: Use infimizing sequences, modify boundary conditions.
- Difficulties: Ensure boundary conditions without violating admissibility (in particular non-interpenetration condition).

The Full 2D Model and Further Questions

$$H_n(u) := \sum_{i,j=-n}^n \lambda_n^2 h\left(\frac{u^{ij} - u^{i\pm 1j}}{\lambda_n}, \frac{u^{ij} - u^{ij\pm 1}}{\lambda_n}\right)$$

Results for the full 2D model:

- Rigidity (one sided comparability to spin system).
- Sharp-interface limit:

$$H_n^1 := \frac{\lambda_n^{-1}}{H_n} \stackrel{\Gamma}{\to} \tilde{E}_{surf}$$

with respect to the L^1 topology.

Further questions:

- More general *m*-well problem, e.g. three wells?
- Higher dimensional problem, e.g. 3D?
- Form of the energy densities?
- Minimizers of the energy densities? Relation to diffuse/sharp interfaces?